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Abstract 

The Cox proportional Hazard model has been broadly used and most popular 

technique in survival analysis. Under certain situations parametric models may offer 

advantages over Cox proportional hazard model. In this study five parametric models 

and the Cox proportional hazard model were fitted. The main objective in this study 

was to compare the performance of five models: exponential, loglogistic, Weibull, 

lognormal and Gompertz as well as the semi-parametric Cox model on the survival 

among HIV/AIDS infected patients taking ART in Ntcheu district. Five parametric 

models as well as Cox proportional model were fitted to 6670 HIV/AIDS patients 

who registered for ART from 2007-2012.The results of the analysis using Cox 

proportional hazard model and the Gompertz model were comparable. In both 

models, WHO clinical stage 4, body mass index and being male were found to be 

significantly associated with the survival of HIV/AIDS patients taking ART in Ntcheu 

district. In the multivariable analysis all the parametric models fit better than Cox 

model with respect to AIC and the Gompertz model was found to be the best model 

for modelling the survival among the HIV/AIDS infected patients taking ART in 

Ntcheu district. 
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Chapter 1 

 

1. Introduction 

1.0  Background information 

1.1  Global HIV/AIDS prevalence 

The world as a whole has been greatly hit with the high prevalence of HIV/AIDS. The 

disease has claimed lives of most people. The world Health Organization estimates 

that by the end of 2011, 34 million people (31.4 to 35.9million) were living with 

HIV/AIDS globally (UNAIDS, 2012). The annual deaths worldwide have been 

estimated to be around 1.7 million (1.5 to 1.9million) in 2011 (UNAIDS, 2012) and 

this was 24% fewer deaths than in 2005.   However statistical figures have shown that 

there is a decrease in the new HIV/AIDS infections by 35% since 2000 by the end of 

2014 (UNAIDS, 2015). The decrease has been due to the antiretroviral therapy which 

reduces the viral load of a person with HIV to virtual undetectable levels and it also 

reduces the risk of transmitting the virus to uninfected partner (UNAIDS, 2015). A 

new report from Joint United Nations Programme on HIV/AIDS, the World Health 

Organization and the UNICEF on HIV treatment 2013, indicates a huge acceleration 

in the roll out and uptake of antiretroviral therapy since 2011.Arecord of 14.9 million 

people living with HIV were accessing treatment in 2014 compared to 13.0 million in  

2013 (UNAIDS, 2015). 
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1.2 HIV/AIDS prevalence in sub-Saharan Africa 

The sub-Saharan Africa remains the most heavily affected region in the global HIV 

epidemic with 1 death in every 20 people living with HIV (UNAIDS, 2012). In 2011 

an estimated 23.5 million (22.1 to 24.8million) people living with HIV resided in sub-

Saharan Africa, representing 69% of the global HIV burden (UNAIDS, 2012).The 

number of newly infected cases continue to fall and there has been a decline in the 

number from AIDS-related illness (UNAIDS, 2012). In 2011, there were an estimated 

1.8 million (1.6 to 2 million) new HIV infections in Sub-Saharan Africa compared to 

2.4 million (2.2 million-2.5 million) new infections in 2001, a 25% decline (UNAIDS, 

2012).UNAIDS (2012) has indicated that between 2005 and 2011, the number of 

people dying from AIDS-related causes in sub-Saharan Africa declined by 32%, from 

1.8million (1.6million-1.9million) to 1.2 million (1.1 million-1.3 million). 

 

1.3 HIV/AIDS prevalence in Malawi 

Malawi is one of the countries from the sub-Saharan region and is divided into three 

regions, South, Central and North. The 2012 Global AIDS Response Progress 

Report(2010- 2011) has revealed that the HIV prevalence in Malawi has decreased 

significantly from 17.6% in 2004 to 14.5% in 2010 in the southern region and from 

8.1% in 2004 to 6.6% in 2010 in the northern region. The central region has 

experienced an increase in the prevalence of HIV as it has gone up from 6.5% in 2004 

to 7.6% in 2010(Global AIDS Response progress Report, 2012). The USAID/Malawi 

has indicated that the overall HIV prevalence in urban is 17.4% and that of rural areas 

is 8.9% with an estimated of about 920000 people infected with HIV/AIDS in 2009. 
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The Malawi Demographics profile(2013) indicate that the HIV/AIDS adult 

prevalence rate in Malawi is 11% as estimated in 2009 of which 51000 people had 

died of HIV/AIDS in the same year. The Malawian government started giving free 

antiretroviral therapy in public sectors in 2004 (UNAIDS, 2012) and a total of 10761 

were on ART. The Malawian government in 2011 received funding from the 

President’s Emergency Plan for AIDS Relief (PEPFAR) through USAID for essential 

HIV/AIDS programme and services (USAID Malawi, 2012).  The funding has helped 

to register significantly large number of HIV infected patients up to about 477022 

who were initiated on ART by the end of 2011. It has been indicated that 

347983(73%) HIV/AIDS infected patients were on ART by the 31st March, 

2012(Ministry of Health Malawi, 2012). This is an improvement compared to 2004 

HIV/AIDS infected people who were registered on ART.  

 

1.4 HIV/AIDS prevalence in Ntcheu 

Ntcheu district is located in the central region. It has the population size of 471589 

(Malawi population census, 2008).The district hospital has 269 beds and there are 37 

health centres of which 15 are private health centres.The hospital started providing 

free Antiretroviral (ARV) drugs in 2005.However out of these 37 health centres, 5 do 

not provide the ARVs due to the fact that that they have no trained staff like Medical 

assistants and nurses. In addition to that the district has not enough qualified 

personnel to administer HIV/AIDS test. Ntcheu had since registered 11340 

HIV/AIDS infected patients (Ministry of Health Malawi, 2012) and all them are on 

ART. 
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A number of nongovernmental organizations are taking part in addressing the dangers 

of HIV/AIDS in the district so as to help in the reduction of the HIV/AIDS 

prevalence. These include the Concern Universal, the University of North Carolina 

(UNC) and Elizabeth Glaser Pediatric AIDS Foundation(EGPAF).The activities done 

by these nongovernmental organizations include prevention of mother to child 

transmission, community discussion with people living HIV/AIDS and training of 

health workers. In addition to what the nongovernmental organizations are doing, the 

hospital has also resources which are being used to address the HIV/AIDS prevalence 

like drugs for the prevention of mother to child transmission of HIV. It does also 

provide information about HIV/AIDS, civic education and communications through 

posters among others. Despite these efforts lack of some drugs like flaconazole, 

vinaristine as well as cotrimoxazole preventive therapy for treating opportunistic 

infections continue to be a major factor contributing to the mortality of HIV/AIDS 

infected patients and this poses challenge for the district hospital. 

 

1.5 Problem statement 

The most common approach to analysis of HIV/AIDS data is the “time to event” 

analysis. Often, the question of interest is either “time to death”; “time to be 

discharged alive from hospital” or “time to CD4 immuno recovery” just to mention a 

few.  Researchers commonly apply the semi-parametric Cox regression model to 

address these questions. Much as the Cox regression is considered to be robust to 

model misspecifications in many cases, the choice of this model among medical 

researchers is often based on routine use of the method. Parametric models seem to 

play little or no role in these analysis despite the huge literature on these methods. In 
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fact many medical researchers may not be aware that parametric methods also exists 

that might perform better than the Cox in some isolated cases. Furthermore, many 

researchers do not even make an attempt to test the goodness of fit of the Cox model. 

The plausibility of the Proportional Hazards assumption is also often not tested. I feel 

that there is a gap among health researchers in the analysis approach for this data. I 

believe that in some cases, the parametric model may be more applicable than 

routinely used Cox model. I would, thus, advocate that when analyzing “time to 

event” data, it is important to consider both the semi-parametric (e.g. Cox regression) 

as well as the parametric methods. Under each data scenario, both the semi-parametric 

and the parametric methods should be fitted, compared and the best performing model 

should be chosen. Emphasis should also be on the testing of the goodness of fit of the 

model and the model assumptions. In order to provide an informed guidance on how 

to approach “time to event” analyses, I analysed data from cohort studies that were 

done at Ntcheu district hospital using both semi-parametric and parametric methods. 

The fitted models were compared and goodness of fit was assessed. The assumptions 

were also tested. 

 

1.6 Main objective 

The main objective in this study is to compare five statistical parametric models as 

well as Cox Proportional hazard model for modelling the survival among HIV/AIDS 

infected patients receiving ART therapy in Ntcheu district. 
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1.7 Specific objectives  

a) To compare statistical parametric models on the survival among HIV/AIDS 

infected Patients receiving ART therapy in Ntcheu district. 

b) To determine factors associated with mortality of HIV/AIDS infected patients. 

 

1.8 Justification 

Survival parametric models make it possible for clinicians to interpret the treatment 

benefit in terms of an effect on expected duration of illness. Hence the models have 

explanatory advantage in that covariates have a direct effect on survival rather than on 

hazard functions as in the proportional hazard model. The parametric models allow 

survival probabilities to be projected beyond observed follow–up. Therefore, the 

parametric models are more valuable, realistic and are known to be more accurate. 

 

1.9 The structure of the thesis 

The thesis has been structured as follows: In chapter two literature review has been 

cited for HIV/AIDS and related survival models. Chapter 3 contains statistical 

methodology which has been used in this study: Cox proportional hazard model, 

parametric models (Gompertz, Loglogistic, Lognormal, Weibull and Exponential), 

logrank test, Kaplan-Meier methods and Cox-Snell residuals. The results and 

discussion of the study are represented in chapter four. Finally, conclusion, limitation 

with associated recommendations are presented in chapter five.  
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Chapter 2 

2. Literature review 

The survival patterns following HIV infections in African population in the era before 

antiretroviral therapy form an important baseline for measuring future success of 

treatment programmes and the knowledge of the survival times of patients with AIDS 

and variables that influence survival is important both for increasing understanding of 

the patho-physiology of the disease, clinical decision making and planning health 

services intervention (Isingo et al, 2007; Jerene, 2007).The survival of patients with 

AIDS may depend on a variety of factors including hosts, the patterns of diseases 

present, access to health care, diagnostic routines and therapeutic interventions 

(Robert, Gilbert and Jean (1995). 

 

The factors affecting the chance of survival/death status of HIV-positive people under 

the antiretroviral treatment programme were evaluated at a Dama hospital in Ethiopia, 

in a retrospective cohort study. The author used multiple logistic regressions for 

analysis and argued that the logistic is preferred from multiple regression and 

discriminant analysis as it results in a biologically meaningful interpretation
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It is mathematically flexible and easily used distribution and it requires fewer 

assumptions. The model showed that condom use, alcohol, baseline weight, baseline 

CD4 cell count among others were found to be the factors associated with the death 

status of HIV infected patients (Nuredim,2007). In their study on CD4 cell count 

recovery among HIV infected patients with very advanced immunodeficiency 

commencing antiretroviral treatment in sub-Saharan Africa, separate multiple linear 

regression models were used to estimate the average change in CD4 cell count per 

month in South Africa at the Gugulethu community Health centre, Cape Town. In the 

analysis the separate multiple linear regression was used to examine factors associated 

with rates of CD4 cell counts increase per month and multiple logistic regression was 

used to assess factors associated with binary outcomes of a CD4 cell count increase 

and a study that was conducted on 122925 adult HIV-infected patients aged 15years 

or order from East Southern and West Africa, Asia pacific and Latin America so as to 

provide estimates of mortality among HIV-infected patients taking combination of 

antiretroviral therapy, the authors used piece wise exponential model fit through 

Poisson regression. The model reported that patients’ mortality was high during the 

first 6 months after therapy for all patient groups. The following were the factors 

considered as predictors of mortality; age, gender, CD4 count at the initiation of 

therapy and at 6, 12, 24 and >24 months after the start of treatment (Lawn et al 2006; 

Constantin et al, 2012). 

 

The factors associated with increased levels of self-reported quality of life among 

HIV-infected patients were identified using the logistic regression for the analysis of 

patients who were recruited at the two public health referral centres for AIDS, Belo 
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Horizonte, Brazil. The logistic regression indicated that >8years of education, 

non/mild symptoms of anxiety and depression, no antiretroviral switch, lower number 

of adverse reactions and better quality of life at baseline were independently 

associated with good/very good quality of life over four months of treatment. 

 

A retrospective cohort study was conducted to examine the morbidity and mortality 

patterns of hospitalized adult HIV/AIDS at Ahmadu Bello University Teaching 

Hospital between June 2006 and December 2009 in northern Nigeria. In the study, the 

Mann-Whitney and Pearson chi-square tests were used for difference in variables by 

ART status. The unconditional binary logistic regression analysis was used to 

determine independent predictors of mortality. Out of 207 reviewed, 66(31.9%) 

patients died with higher mortality in males. Another examination on long-term 

survival in HIV-positive patients receiving cART was conducted in the Australia HIV 

observation Database (AHOD) to describe changes in mortality compared to the 

general population. The Cox proportional hazard and parametric survival models were 

used. The models revealed that improved survival was associated with increased 

recent CD4, reduced recent viral load, and younger patients. Parametric models 

showed a fairly constant mortality risk by year of cART up to 15years of treatment 

(Lorenza et al, 2009; Ogoina et al; 2012, McManus et al, 2012). 

 

The effect of antiretroviral therapy on survival of HIV/TB infected patients in Ukraine 

was assessed in prospective cohort study. The Kaplan-Meier method  was used to 

determine the survival of 80 patients and the effect of HAART on survival was 

evaluated using Cox proportional hazard models. From the results of the analysis, it 
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was found that patients with CD4 cell count<100  had 5-fold higher risk of mortality 

and those with pulmonary tuberculosis with a 2 fold increased risk .Another 

assessment as to whether highly active ART was associated with improved survival in 

critically ill HIV-infected patients was conducted at the Saint–Louis teaching Hospital 

in Paris, France. In this study, multivariable logistic regression was used to identify 

risk factors for death. It was found that five factors were independently associated 

with increased intensive care unit mortality: delayed intensive care unit (ICU) 

admission, acute renal failure, hepatic cirrhosis (ICU), admission for coma and severe 

sepasis. (Mykhailo and Dmytro, 2013; Isaline et al, 2010). 

 

The predictors of change in CD4 lymphocyte count and weight among HIV/AIDS 

infected patients taking ART were determined in Eastern Ethiopia, in a retrospective 

cohort study on 1540 patients from 2005 to 2010.The study used linear regression to 

characterize and screen data for problems of multi-collinearity and mixed model 

regression was used to examine changes in CD4 cell count and weight after the base 

baseline measurement. The results showed that median CD4 lymphocyte counts and 

weight improved in the follow up periods. Advanced WHO clinical stage, lower 

baseline CD4 cell count and baseline hemoglobin levels were found to be factors 

associated with decline in weight. The adherence to ART in Benin City and 

identification of the contributing factors in a prospective study conducted on 125 out 

patients were assessed in the University of Benin Teaching Hospital. The authors used 

logistic regression models to determine the predictors of adherence relative to socio-

demographic and clinical treatment variables. The proportional data were compared 

using Chi-square test or fisher exact at statistical significance of 95% confidence 
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interval. The results from the findings showed that poor financial status, medication 

adverse effects, lack of confidentiality, occupational factors and stigmatization were 

the major reasons given for non-adherence (Ayalu et al, 2012; Era and Arute, 2008). 

 

In a study conducted in north-eastern Vietnam on survival and causes of death among 

HIV/AIDS infected patients starting ART, the Kaplan-Meier analysis was used to 

describe survival trends and the Cox proportion hazard model was used to identify 

predictors. It was found that age>35years, clinical stage 3 or 4, body mass index 

(BMI) <18kg/h 2m , CD4 count<100μl, hemoglobin level<1100g/l and plasma viral 

load>100000 copies/ml were the predictive factors for AIDS-related death and 

tuberculosis (TB) was the most cause of death. In Malawi, a study was conducted on 

gender difference in retention and survival on antiretroviral therapy of HIV-infected 

adults. In the study the Kaplan-Meier estimates were used to analyze gender 

difference and rate ratios were derived from Poisson regression adjusting for 

confounding. It was reported that 4670 ART patients (49.8% female) were followed 

up for a median of 8.7 months after starting ART and the probability of death was 

significantly higher for men than women (p<0.001). Controlling for age WHO clinical 

stage and occupation, men experienced nearly 2 times the mortality of women, 

(Cuong et al, 2012; Katie et al, 2010). 

 

The investigation on the relationship between tuberculosis infection and death in 

HIV/AIDS patients was conducted on 1575 subjects residing in both rural and urban 

areas of Yala province in Thailand and were followed between January 1992 and 

April 2010.Cox proportional hazard model was used to analyse the relationship and 
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the model reported statistically significant relationship in HIV/AIDS patients with 

tuberculosis and patients without tuberculosis. The HIV/AIDS patients with 

tuberculosis were more likely to live longer compared to those patients without 

tuberculosis after accounting for demographic factors. Another study to investigate 

the predictors of mortality in HIV associated hospitalizations in Portugal was done 

through a hierarchical survival model. In this study Kaplan-Meier plots were used to 

examine differences in survival curves. Cox proportional models with frailty were 

applied to identify independent predictors of hospital mortality to calculate hazard 

ratios .The results from the Cox proportional frailty showed that male gender, older 

patients, great number of diagnoses and pneumonia increased the hazard of HIV 

related hospital mortality. It was also found that tuberculosis was associated with a 

reduced risk of death. It was indicated that the frailty variance was so small but 

statistically significant showing hazard ratio heterogeneity among hospital that varied 

between 0.67 and 1.34 (Chaimay et al, 2011; Diass et al, 2009). 

 

The prospective study aimed at estimating the short-term disease progression among 

HIV-infected patients was conducted in Asia and Pacific region. In this study the 

authors used Cox proportional hazard model to assess the predictors of disease 

progression and prognostic models were developed using Weibull models. It was 

found out in the analysis that the patients’ not on treatment had higher rate of disease 

progression with 8.1 per 100 person-years against 17.6 per 100 person-years in the 

patients receiving antiretroviral treatment. The results showed that the baseline CD4 

count was the strongest predictor of disease progression. The authors reported that 

prognostic models were successful at identifying patients at high risk of short-term 
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disease progression. The study was conducted on the outcome of antiretroviral 

treatment in rural public hospital in South Nations, Nationalities and people region in 

Ethiopia. The study used historical retrospective cohort study for patients visiting 

from January 1, 2005 to January 31, 2009.In the study the authors used Kaplan-Meier 

models to estimate mortality and Cox proportion hazard models to identify predictors 

of mortality. It was found that the hazard of death was higher in males Patients with 

WHO stage IV at baseline  compared to WHO stage 1(Zhou and  Kumarasamy, 

2005;Tsegaye and Worku,2011). 

 

The survival rate of HIV/AIDS patients after receiving free antiretroviral treatment 

was determined in Dehong Prefecture, Yunnan Province in a retrospective cohort 

analysis which was conducted on all the HIV/AIDS patients aged over 16 years who 

had started ART during January 2007 throughout December 29 in Dehong Prefecture. 

The authors used the Cox proportional hazard regression model analysis. The model 

indicated that after adjusting for age, sex and marital status, the baseline CD4 (+)T 

cells and transmission route could significantly predicate the rates of survival. It was 

found that those who were with baseline CD4 (+) T cells counts as 200-350/mm were 

less likely to die of AIDS than those with CD4 (+) T cell counts as <200/mm and 

HIV-infected through mother-to-child transmission or routes other than through 

heterosexual transmission were less likely to die of AIDS than through injecting drug 

use (Yao et al, 2010). 
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2.1 Theory for analysis of time to event data 

2.1.1 Survival time distribution 

Survival analysis generally refers to statistical analysis for time to event data. The 

outcome variable of interest is time to event, usually called failure time or survival 

time or life time (Kleinbaum, 1996). It is applied in a number of fields, such as 

medicine, public health, social science and engineering. The distribution of survival 

time, T, is normally described or characterized by three functions: survival function, 

hazard rate and probability density function of survival time, T. 

 

2.1.2 Survival function 

The survival function is the probability that the survival time is greater or equal to t  

(Kalbfleisch and Prentice, 2002), 

                                                                       ),()( tTPtS                                      (1) 

                                                                        ),(1)( tFtS    

                                                                        )()( tTPtF                                     (2) 

The probability density function is the slope of the cdf (failure function), 

             
t

tF

t

ttTtp
ttf











)()(
0lim)(                                                 (3) 

Hence
t

tS



 )(
 is the probability of an individual dying in the interval

t

ttt



,
.  

The survival function S (t) and the failure function F (t) are each a probability and 

hence have the properties of probabilities. It can be observed that, in particular, the 
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survivor function   lies between zero and one and strictly decreasing function of t .The 

survivor function is equal to one at the start of the spell( t=0)and zero at infinity. 

                                                                        1)(0  tS                                           (4) 

                                                                          1)0( S   

                                                                        
0)(lim 0  tSt                                      

(5) 

0




t

s
, and the density function is none-negative,  

                                                                              0)( tf                                          (6) 

2.1.3 The hazard rate 

The hazard rate gives the instantaneous failure rate at time given that the individual 

has survived up to time t (Kalbfleisch and Prentice, 2002). The continuous time, 

hazard rate is defined as, 

                                                         )(
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(7) 

It can also be demonstrated that there is a clear relationship between hazard and 

survival functions given as follows: 

                                                             )(1
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                                                              = 
t

tS



 )}(ln[{

                                            
(10) 

Integrating both sides gives the following: 

                                                               


t
ttFduu

0
0|)](1ln[)(

                         (11)
 

Since F (0) =0 and ln(1)  =0 then 


t

duutStF
0

)()](ln[)](1ln[   

        
t

duutS
0

)(exp()(   

                                                               )](exp[)( tHtS                                    (12) 

Then it follows that: 

                                                         
t

duutH
0

)()(                                               (13) 

which is cumulative hazard function, 

                                                                =- )(ln[ tS  

 

From this it can be observed that, 

                                                       0)( tH  

                                                      )(
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t
t
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




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2.1.4 The probability density function of survival time, T 

This function can be written as follows 

                                                   
t

tduuttf
0

0],)(exp[)()(                              (15) 

The three functions outlined above are equivalent specifications of the distributions of 

the survival time. The survival function is useful for comparing survival progress of 
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two or more groups. Among the functions of the survival analysis, the hazard function 

provides useful description of the risk of failure at any time point. 

 

2.2.0 Statistical methods 

2.2.1 Kaplan-Meier method 

The Kaplan-Meier estimator, also known as the product limit, is an estimator for 

estimating the survival function from lifetime data. It measures the fraction of patients 

living for a certain amount of time after treatment (Kaplan and Meier, 1958). A plot 

of the Kaplan-Meier estimate of the survival function is a series of horizontal steps of 

declining magnitude which, when a large enough sample is taken, approaches the true 

survival function for that population. The value of the survival function between 

successive distinct sampled observations is assumed to be constant. The method is 

defined as: Let xi, x2,... xn be independently identically distributed survival times 

having distribution function F(x) and let G(c ) be the distribution of independently 

identically distributed censoring times c1, c2,…cn and ci are assumed to be independent. 

Let ti=min {xi,ci}is the observed survival time and δi =I(xi≤ci )indicate whether the 

survival time is censored or event. Let the number of individuals who are alive just 

before time ti including those who are about to die at this time, be ni and di denotes the 

number who die at this time. The Kaplan-Meier estimator is defined as: 
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(16) 
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The assumption of the Kaplan-Meier survival function is that the distribution of 

censoring times is independent of exact survival times (interstat.statjournals.net, 

2011). 

 

2.2.2 Logrank method 

Logrank test is used to find out whether the true survival curves differ from group to 

group: 

                            H0: No differences between survival times curves 

                            H1: There is a difference between survival times  

It consists of observed verses expected events. For Example, letting t(1)<…tr be r 

distinct deaths times for each group. At time (j), let d(1j) and d(2j) be the number of 

deaths in group I and II respectively (1j) and n(2j) be the number of persons at risk prior 

to the time to time t(j):Then the logrank test statistic is: 
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where 
j

j
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n
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1
 the mean of the hyper geometric random variable and the variance 

of d1j are given as, 

)1(

)(
)var(

2

21






j

jijjjj

ij
njn

dndnn
d  

where,     

)var(var
1 1 


r

j jd  

Mantel, 1966). 
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2.2.3 Cox proportional hazard model 

Cox proportion hazard model is a semi parametric model which is popular in survival 

data proposed by Cox (1972).The Cox model is defined as 

                       
}...,exp{)()|( 110 kk xxthxth  

                                                    
(18), 

where  h(t|x)  is the hazard function at time t for a subject with explanatory variables 

X=(x1,x2…xk), h0(t) is the baseline hazard function, that is the hazard function when 

all covariates equal to zero and β1 is the regression coefficient for the ith covariate. 

The baseline can take any form (unspecified) but not negative. The Cox model 

assumes that the hazard functions for the two different levels of a covariate are 

proportional for all values of it and is given by 
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)()1(exp{ 1 pXpXXX jkpjk  
                                 

(19) 

hence  h0(t) cancels out and this means that the ratio is the same at all-time points.    

2504,,,,,, 7654321  cdxsexxoccupationxwhostagexweightxbmixagex

,
regimenx 8  

 

2.2.4 Assumption of the Cox model 

The Cox model makes the following assumptions: 

a) The structure of the model is assumed correct. That is for example, 

model is multiplicative and all relevant covariates have been met. 

b) The continuous covariates have a linear form 

c) The proportional hazard assumptions are satisfied. 
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2.2.5 Cox model popularity 

The Cox model has the following key properties: 

a) It is robust hence a safe choice of model in many situations. 

b) Estimated hazard are always non-negative 

c) Even though h0 (t) is unspecified, si  can be estimated and thus compute 

the hazard ratio. 

d) The h0(t|x) and S(t|x) can be estimated for a Cox model using a minimum 

of assumption. 

 

The Cox proportional hazard model can fit by maximizing the likelihood function and 

this procedure estimates the  h0(t) and β.The popular approach is proposed by Cox 

(1975) in which a partial likelihood also called Cox likelihood function that doesn’t 

rely on h0(t) is realized for β.  The partial likelihood is a technique developed to make 

inference about the regression parameters in the presence of nuisance parameter h0(t) 

in the Cox PH model. Assume K different failure times t(1), t(2)...t(k) such that there is 

exactly one failure at each t(i), i=1,...,k .Let [i] denote the subject with an event time 

t(i) and R(t) the risk set at time t, then the partial likelihood is given as 
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(20) 

The likelihood considers probabilities for subjects who fail and doesn’t consider 

probabilities for censored subject explicitly. The censored subjects are taken into 

account in the risk set. The estimates of βs is denoted by si̂ .The si̂  solves 
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(21) 

Therefore  si̂  maximize the Cox likelihood. 

 

2.2.6 Proportional hazard assumption checking 

The proportional hazard is the core assumption of the Cox model. There are a number 

of procedures for ensuring that a model satisfies the assumption of proportionality  

before the model results can be safely applied(Brant,2004).The proportional hazard  

means that the survival for two subjects have hazard functions that are proportional 

overtime(constant relative) (Brant,2004). 

 

2.2.7 Graphical method 

The Cox PH survival function can be obtained by the relationship between hazard 

function and survival function, 
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Where X=(x1, x2…xk) is the value of the vector of predictor variables for a particular 

individual. Taking the logarithm twice, we have 
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It can be noted that the difference in log-log curves corresponding to two different 

individuals with variables X1=(x11, x12…x1k) and X2=(x21,x22…x2k) is given by 
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which doesn’t rely on t. By plotting estimated log (-log (survival) versus survival time 

for the two groups parallel curves would be realized if the hazards are proportional. 

However, this method doesn’t work well for continuous predictors or categorical 

predictors that have many levels because the graph becomes “cluttered”. Moreover, 

the curves are sparse when there are few time points and it may be difficult to gauge 

how close to parallel is close enough. 

 

2.2.8 Adding time-dependent covariates in the Cox model 

This is done by creating interactions of the predictors and a function of survival time. 

Let Xi   be the predictor of interest, and creating  Xj(t) as a time –dependent covariate, 

then 

                                                             Xj(t)=Xi *g(t)                                                            (24) 

where g(t) is a function of time. The model assessing PH assumption for Xj  adjusted 

for other covariates is  

)](*...exp[)())(,( 22110 tgXXXXXthtth jppjj  
                          

(25), 

where ))(...,()( ,21 txxxxtX jp  is the value of predictor variables for a particular 

individual. The null hypothesis, to check proportionality is that δ=0.The test statistic 

can be done using either a Wald test or a likelihood ratio test. These statistics have 

chi-square distribution with one degree of freedom under the null hypothesis. If the 

time –dependent covariate is significant, then the predictor is not proportional. 
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2.2.9 Deviance residuals 

The deviance residuals (Therneau, Grambsch and Fleming, 1990) is defined by 

     
2

1

}]log({2[( iiiiii rxrxrxsignrD  
                                                              

(26) 

Where the function sign(.)  is the sign function which takes the values 1 if rxi   is 

positive and -1 if rxi if negative; 

iii rcrx    

is the martingale residuals for the ith individual; and δi=1 for uncensored observation, 

and δi=0 for censored observation. The deviance residuals are normalized 

transformation of the martingale residuals (Therneau, Grambsch and Fleming, 

1990).They have a mean  zero but are approximately symmetrically distributed about 

zero when fitted model is appropriate. Very large or small value can indicate potential 

outliers. 

 

2.3.0 Schoenfeld Residuals 

Schoenfeld residuals are computed with one per observation per covariate. It only 

defined at observed event times for the ith subject and kth covariate, the estimated 

Schoenfeld residual, rik, is given by 

wikikik XXr ˆˆ   

where ikX  is the value of the 
thK  covariate for individual I and wikX̂  is the weighted 

mean of covariate values for those in the risk set at the given event time. Positive 

value of risk shows X value that is higher than expected at that death time. The 

Schoenfeld residuals sum to zero.  
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2.3.1 Parametric survival models 

Parametric survival models are regression models in which the distribution of the 

response is chosen to be consistent with what one would see if the response is time- 

to- failure (Gutierrez, 2002).The parametric models are fitted to the survival data 

using maximum likelihood method, the procedure is described as follows: 

Suggesting that the survival times t1,t2…tn are observed and q of the n  individuals die 

at times t(1)<t(2)…t(qand that the survival times of the remaining n-q(q<n) individuals 

are censored. If   f(t) denotes the probability density function of the survival time t and 

S(t) be the survival function, then, the likelihood is given by, 

                                              ci

i

cin

i i tStf 

 1

1
)}({})({

                                               
(27) 

where, c is an indicator variable, taking value 0 when the survival time is censored 

and 1 for the uncensored survival time. Five parametric survival models: Weibull, 

Exponential, Gompertz, Log-logistic, Lognormal have been considered in the study. 

 

2.3.2 Weibull model 

The Weibull distribution is the generalized version of the exponential distribution. 

It is preferred for performing survival data analysis in industrial engineering (Weibull, 

1951).However, when implementations in the discipline of medicines are examined, 

one may see that it is an important distribution model. It is a flexible distribution that 

allows monotonous increasing and decreasing of mortality ratio in patients groups. In 

a study carried by Viscomi et al (2006) the distribution of the survival period of 

childhood leukemia patients was analyzed using the Weibull distribution. In a study 

conducted in Italy on the national wide estimations of the cancer patients, some 
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estimations were made for defining the parameters of Weibull distribution. The 

Weibull distribution has the following functions: 

                                           
1)()|(  p

i tpxth 
                                                          

(28) 

where )exp(  ix  is the hazard function. The survival function is given by 

                                             pttS )exp()(                                                         (29) 

and the Probability density function is defined as 

                               pttptf p )exp()()( 1   

                                                         (30) 

In weibull model the hazard function for a person with explanatory variables 

(x1,x2,…,xp) is given by: 
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(31) 

The Weibull is a two parameter model (λ and  p) where λ is the location parameter 

and p is the shape parameter since it determines whether the hazard is increasing p>1 

or decreasing p<1  or constant p=1 overtime. When considering the applicability of 

Weibull distribution the validity of monotonic hazard must be followed. 

 

2.3. 3 Exponential model 

The exponential model is the special case of the Gamma distribution and is used in 

cancer survival model. It was once used by Dewals and Bouckaert (1985) on carrier 

bacteria. The exponential model is characterized by the constant hazard rate .Thus it 

has one parameter denoted by λ. This implies that the conditional probability of an 

event is constant overtime. If the exponential distribution is to be used it is important 

to consider whether the hazard is likely to remain constant over an entire lifetime. The 

exponential functions are, 
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                                             )|( xth                                                                     (32) 

is the hazard rate, and the hazard function is given by, 

                                            0,0,)(  ttth                                                       (33) 

The survival function is defined as 

                                           )exp()( ttS                                                                (34) 

The probability density function for the exponential regression model is given by 

                                          )exp()( ttf                                                               (35) 

The exponential model assumes that the baseline hazard is constant (Lawless, 2003). 

Therefore the hazard is given by, 

                                            
txxth i ))exp(()|( 10  

                                             
(36) 

The survival function is given by, 

                                 
txxxtS ii )exp(exp{)|( 0  

                                               
(37) 

Then the hazard function for a particular person with the explanatory variables 

(x1x2…xp) is given by: 

              
)exp()...exp()|( 2211 xxxxxth pp  
                                     

(38) 

 

2.3.4 Gompertz model 

Gompertz model is used frequently by medical researchers and biologists in modeling 

mortality ratio data. The model was formulated by Gompertz (1825).It has these 

functions: 

Hazard function: 
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                                                         )exp()( tth                                                  (39) 

for  t0  , where λ is positive value and is the scale parameter and ϴ is the shape 

parameter. When 0  survival times have an exponential distribution, where γ>0 

the hazard increases monotonically with time and when γ<0 the hazard decreases with 

time. 

                                                 )exp()exp()( 00 tth 
                                            

(40) 

The model now becomes: 

)exp()()|( 0 xxthxth ii   

                                          = ))exp(()exp( 0 xxt i 
                                              

(41)         

 

The survival function   is given by    

                                                            )exp(1(exp()( ttS 





                               

(42) 

The distribution is characterized by the fact that the log of hazard is linear in it. The 

hazard function for a particular person using the Gompertz distribution is given by: 

   
)exp()exp()...exp()exp()|( 2211 txxxxtxth pp  

                         
(43) 

 

2.3.5 Log-logistic model 

The log logistic distribution is continuous for the random variable which is not 

negative in probability and statistics. The mortality ratio in a life analysis slowly 

decreases after it reaches to the maximum point over a finite period and it is suitable 

to use anon monotonic failure rate distribution model on the life and lost (Viscomi et 
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al, 2006). In case of censored data, using log logistics distribution is mathematically 

more advantages than other distributions (Hayati, 2010). 

 

A study conducted by Byers et al(1988) on the spreading ratio of HIV virus in San 

Francisco between 1978 and 1986 indicated that log logistic was the most suitable 

model among many distributions to use with half censored data. Zhou et al (2007) 

conducted study in which he emphasized that the maximum likelihood estimation was 

the most suitable method in estimating the parameters when performing analyses 

using loglogistic distribution on grouped data such as half censored data. 

These are the distributions functions for the log logistic: 
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the hazard function, h(t), increases then     decreases if p>1, monotonically, decreases 

when p=1, λ gives information on the covariate, 

)exp(  ii x  

and the following function, 
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(45) 

is the survival function.The Accelerated Failure time for the loglogistic regression: 

                                         iii txxt )exp(  
                                                             

(46)  

                                         ti~Loglogistic (β0, γ)  

This has the cumulative distribution function: 
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)ln()ln( iii xxt    

                                                         ii xx   0                                                 
(48)  

i  
follows a logistic distribution with mean 0 and the standard deviation,

3


.This 

follows:  

                                            
][}|){ln( 0 xxxtE iii  

                                             
(49) 

The base line survivor functions of ti is given by, 
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(50) 

Hence the effect of the covariates is to accelerate time by the factor of   )exp( xxi .  

Then the Accelerated Failure time model is   given by 

                                                               iiii txxSxtS ){exp()|( 0 
                         

(51) 
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2.3.6 Lognormal 

The lognormal is a skewed distribution where the average values are low, variances 

are high and the values are not negative. The theory of the lognormal distribution was 

characterized by McAlister (1897) and there is accordance to the lognormal 

distribution in many examples in the area of medicines. The history of lognormal 

distribution, its features, estimation problems and its use in economics were examined 

in detail in 1957. The survival distributions of Hodgkin’s disease, chronic leukemia 
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were analyzed via lognormal distribution, which is positively skewed and with 

survival period distributed normally (Lee and Wang, 2003). Feinleib and McMahon 

(1974), in a study conducted on chronic lymphocyte and myelocythic leukemia 

patients, applied lognormal distribution. In the lognormal, the hazard function 

increases from 0 to reach maximum and then decreases monotonically approaching 0 

as t .The survival function is given by: 
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where Φ is the standard normal cumulative density function and  μ=xβ.The hazard 

rate is given by: 
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the hazard rate rises first then  falls. The density function is given by: 
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However the lognormal has no proportional hazard interpretation. Hence, its 

interpretation is in the AFT metric (Cleves, 2010).It assumes that ti ~lognormal )( ,0   

and it has the cumulative distribution as given by: 
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is the cumulative distribution function for the standard Gaussian(normal) distribution, 

hence 

                                                      )ln()ln( iii xxt  
                                             

(57) 

The lognormal model transforms time into  ln(time) and converts the problem into 

simple linear regression: 
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The baseline survivor function is realized as:  
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2.3.7 Accelerate failure time model 

The Accelerated Failure Time model is a linear regression model in which the 

response variable is the logarithm or known monotone transformation of a failure time 

(Lee and Wang, 2003).The accelerated failure time model describes a relationship 

between the survivor function of any two individuals. Taking Ti to be a random 

variable denoting the failure time for the ith subject, and let Xi1,X12…, Xip be the 

values of p covariates of the subject. The model is then given by 

                                             
}...1{log 10 iipi pXXT  

                       
(60) 

Where ii th  ),(~ 0 is a random disturbance term, p ,...,0   and σ are parameters to 

be estimated, )(0 th  is a known baseline survival, Ti is actual survival times sometimes 

observed is a scale parameter and Xi is a fixed P*1 vector of covariates and Xi is 

assumed to affect logT linearly and no interactions. Moreover, is σ   assumed to be 

constant and independent of Xi. The parametric accelerated failure time distribution is 

also assumed to be correctly specified. The survival function for the parametric   

baseline accelerated failure model is given as, 
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where )(0 tS  is the baseline. These accelerated failure time models are named for the 

distribution of T rather than the distribution of   or logT. This is so because different 

distributions have different implications for the shapes or hazard function (Cox and 
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Oakes D, 1996).  It has been noted that the proportional hazard model is used 

exclusively in practice. However; the accelerated failure time model in many ways is 

more appealing because it is quite direct physical interpretation especially when the 

response variable does not pertain to failure time (Reid, 1994). 

 

2.3.8 The fitness of the model 

When the model has been fitted the adequacy of it needs to be assessed. There are a 

number of ways to check the adequacy, like using cox-Snell, deviance among others. 

 

2.3.9 Cox –Snell residuals 

The Cox-Snell residuals is given by Cox and Snell (Cox and Oakes,1984).The 

residuals for the ith individual with the observed survival time it is given as follows, 

                          
)(ˆlog)()()exp( 0 iitiici tStHtHXr  

                                      
(62) 

Given that )(0 itH  is an estimate of the baseline cumulative hazard function at time ti 

and it was derived by Kalbfleish and Pretence (1973). 

Letting T be the continuous survival distribution S (t) with the cumulative hazard, 

                                                            ))(log()( tStH                                           (63) 

Then it follows thus, 

             ))(exp()( tHtST   

Taking )(tHY   be the transformation of T based on cumulative hazard function. It 

follows that the survival function for  is now given as 

                                                         })({)( ytHpyYpSY                         (64) 

))(())((
11

yHSyHTP TTT


  



33 

 

))}exp())((exp{(
1

yyHH TT 


 

The new )(tHY   has an exponential distribution with unit one. If the model was 

well fitted, the actual value )(ˆ
ii tS would have similar properties to those of  )( ii tS  

Therefore cir  logŜ )( tt will have a unit exponential distribution 

with ).exp()( rrfR   Letting )(rSR  denote the survival function of Cox-Snell 

residuals cir , then 
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and it follows that, rrrSrH RR  )log(exp)()(log)(                                (66) 

Hence a plot of )( cirH  versus cir  is used to check the fit of the model. This gives a 

straight line with a unit slope and zero intercept if the fitted model is correct. 

 

2.4.0 Model checking 

There are a number of methods which are employed to check if a parametric 

distribution fits the observed data. In this study the Akaike information Criterion 

(AIC), a statistical criteria, used for comparing models and residuals plots used to 

check the goodness of fit of the model have been used. 

2.4.1 Akaike information criterion (AIC) 

The Akaike information criterion (AIC) proposed in AKaike (1974) is a measure of 

the goodness of fit of an estimated statistical model which compares the models 

which have been fitted. The AIC is an operation way of trading off the complex of an 

estimated model against how well the model fits the data. The AIC is defined by 

                                       )(22 cklAIC                                                       (67) 
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where  l is the log likelihood, k is the number of covariates in the model and c is the 

number of model- specific ancillary parameters. The addition )(2 ck   is thought as 

penalty if non-predictive parameters are added to the model. Lower values of the AIC 

suggest a better model. However, there is a difficulty in using AIC in the sense that 

there is no formal test statistically to compare different AIC values when two or more 

models have similar AIC values. Hence, the choice of the model may be hard to 

determine. 

 

2.4.2 Residual plots 

The residual plots can be used to check the goodness of fit of the model. Among the 

useful plots is based on comparing the distribution of the cox-Snell residuals with the 

unit exponential distribution. The cox-Snell residual for ith individual with observed 

time, tiis defined as: 

                                      ])(ˆlog[)|(ˆ
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(68) 

where  ti is the observed survival time for individual i, xi is the vector covariate values 

for individual i , and )(ˆ
ii tS is the estimated survival function on the fitted model. The 

estimated survival function for the ith individual is given by  
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where  ˆ,ˆ  and ̂  are the maximum likelihood estimator of  , and 

 respectively, )(iS  is the survival function of i  in the AFT model and 
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is referred to as standard residuals.
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Chapter  3 

 

3   Research design & methodology 

3.1 Research design 

The data used in this project came from cohort studies that were done at Ntcheu 

District hospital. All the records with a total of 6670 patients were studied. The 

decision to analyse all the records was arrived at after seeing that there was a lot of 

missing information in most of the variables considered. Hence, the study would just 

left with fewer subjects had the study just used sample and the results would not be 

true. 

 

3.2 Data collection 

A total of 6670 patients were followed from 2007 to 2012. This data was collected 

from the medical records (master cards) of patients who were registered for ART 

from January 1, 2007-December31; 2012 at Ntcheu district hospital which was 

electronically stored into touch screen computers by Baobab health. The data was 

collected from the patients’ records by two clerical statisticians, one surveillance, two 

data entry clerics and the HIV/AIDS counselor together with the ART clinical nurse. 

These included patients aged 15 years and above. The clinical nurse assisted in 

tracking down the quarterly data from ART supervision monitoring checklist from 1 



36 

 

January, 2007 to 31 December, 2012 to ensure that the data taken reflects what had 

been stored electronically. A permission was obtained from the Ministry of Health 

through the District Health Officer to have an access to the data required. The 

collected data was cleaned and validated to make sure that the data was of reasonable 

quality before conducting the analysis. 

 

3.3 Response variable (dependent variable) 

The response variable in this study is the survival time from the initiating ART till 

outcome. The outcome of interest in this study is the time it takes a patient on ART to 

die keeping all other variables constant. 

 

3.4 Predictor variables (independent variables) 

The following variables were considered as covariates in the statistical models: age in 

years, body mass index (bmi), occupation, World Health immunological staging 

(Who stage), CD4<=250 and sex. Age in this study has been considered looking at the 

role it plays in relation to HIV/AIDS patients. For instance age determines the type of 

regimen to be given to the patients. The regime is typical to adults or children 

depending on the conditions. It also helps to know when one did start ART. 

Furthermore, age helps clinicians to provide proper and constructive advice to the 

guardians of the HIV/AIDS infected patients on ART on how they can take care of 

the patients.  Body mass index has been considered in the study as it helps to 

determine as to whether patient is having nutritious diet or not. Body mass index is 

associated with immunity of the body. The Cd4 has been included in the study due to 

the fact that for the HIV/AIDS patients to be initiated on ART there is need to check 
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cd4 cell count. In addition to that it helps the clinicians to  check if there are  any 

increase in cd4 cell count after the patient has been initiated on ART, thus to find out 

if there exist any positive impact of the treatment received by the HIV/AIDS patients. 

The WHO clinical staging (3&4) has been used in the study as predictor variable 

since it helps to determine the time an HIV/AIDS patient has to be initiated on ART. 

For example those patients who might be in WHO clinical stages 1 and 2 are not 

initiated on ART. However, at other times patient can be initiated on ART while in 

WHO clinical stage 1 or if the cd4 cell count is less than the threshold. Another 

predictor which is occupation helps the clinician to suggest the risk behavior 

depending on the type of occupation. It helps to have a clue to what led them to 

contrite the HIV. And this helps the patient to be given the appropriate advice. At 

other situations the type of work could be that of heavy duty and this can shorten the 

life of the patient, so there is need to be given advice basing on the type of 

occupation. Another example on occupation is that of a farmer in that if the type of 

crop grown is tobacco can make the patient to have higher risk of being infected with 

tuberculosis which can lead to higher mortality. HIV-related diseases are grouped into 

four WHO clinical stages that correlate with disease progression and prognosis of 

survival: 

a. Stage  1:  Asymptomatic 

b. Stage 2: Mild (moderate weight loss<10% unexplained, seborrhoeic 

dermatitis) 

c. Stage 3: Advanced(severe weight loss>10%) and /or BMI<18.5kg/m2 

unexplained, diarrhea, chronic(>1month) unexplained, oral candidiasis, 

severe,bacterial,infections(pneumonia,empyema,pyomyositis,bone/joint,m
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eningitis,bacteraemia) acute necrotizing ulcerative stomatitis, gingivitis or 

periodontitis, hepatitis B or C infection. 

d. Stage 4:Severe(HIV wasting syndrome(severe weight loss+persistent fever 

or severe weight loss+chronic diarrhea),bacterial pneumonia, recurrent 

severe, chronic herpes simplex infection, cytomegalovirus infection, 

toxoplasmosis of the brain, non-typhoidal salmonella bacteraemia, 

recurrent, invasive cancer of cervix, leishmaniasis (Ministry of 

Health,Malawi,2011). 

Table 1 shows the variable description and categorization. 

 

Table 1 : Variable description  

VARIABLE CODING DESCRIPTION 

Gender 1=female categorical 

 2=male 

Age (in years of the patient)  continuous 

WHO Stage 3=1 categorical 

 Stage 4=2 

Cd4<=250 cells per l  Cd4=1 1=initiated at <=250 

0=otherwise  Cd4=0  

occupation 0=non worker categorical 

 2=worker 

Body mass index(BMI) in kg/cm2  continuous 

Weight  of the patient in kilogram  continuous 
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3.5  Statistical methods 

3.5.1 The Kaplan-Meier method 

The Kaplan-Meier estimator, also known as the product limit, is an estimator for 

estimating the survival function from lifetime data. In this study it has been used to 

assess the survival probability overtime after initiation of ART comparing the survival 

among the patients, since this method measures the fraction of patients living for a 

certain amount of time after treatment (Kaplan and Meier, 1958). A plot of the 

Kaplan-Meier estimate of the survival function is a series of horizontal steps of 

declining magnitude which, when a large enough sample is taken, approaches the true 

survival function for that population. The value of the survival function between 

successive distinct sampled observations is assumed to be constant. The method is 

defined as:  Let xi, x2,... xn be independently identically distributed survival times 

having distribution function F(x) and let G(c ) be the distribution of independently 

identically distributed censoring times c1 c2,…cn and ci are assumed to be independent 

times c1,c2,…cn and ci.Let ti=min {xi,ci} is the observed survival time and δi =I(xi≤ci ) 

indicate whether the survival time is censored or event. Let the number of individuals 

who are alive just before time ti including those who are about to die at this time, be ni 

and di denotes the number who die at this time (equation:16).  The assumption of the 

Kaplan-Meier survival function is that the distribution of censoring times is 

independent of exact survival times (interstat.statjournals.net, 2011). 

 

3.5.2 Logrank method 

Logrank test has been used to find out whether the true survival curves differ from 

group to group: 
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H0: No differences between survival times curves 

H1: There is a difference between survival times curves 

It consists of observed verses expected events. For Example, letting t(1)<…tr be r 

distinct deaths times for each group. At time(j),let d(1j) and d(2j) be the number of 

deaths in group I and II respectively, n(1j) and n(2j) be the number of persons at risk 

prior to the time to time t(j) (equation:17). 

 

3.5.3 Cox proportional hazard model 

Cox proportion hazard model is a semi parametric model which is popular in survival 

data proposed by Cox (1972).It has been used to determine the difference of survival 

time (in years) in relation to sex, WHO clinical stage 4, age, cd4, occupation and 

regimen. The Cox model assumes that the hazard functions for the two different levels 

of a covariate are proportional for all values of it (equation: 19). In this 

study,

regimenxcdxsexxoccupationxwhostagexbmixagex  7654321 ,2504,,,,,

 

3.5.4 Assumption of the Cox model 

The Cox model makes the following assumptions: 

a) The structure of the model is assumed correct. That is for example, 

model is multiplicative and all relevant covariates have been met. 

b) The continuous covariates have a linear form 

c) The proportional hazard assumptions are satisfied. 

3.5.5 Cox model popularity 

The Cox model has the following key properties: 
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a) It is robust hence a safe choice of model in many situations. 

b) Estimated hazard are always non-negative 

c) Even though h0 (t) is unspecified, si  can  be estimated and thus compute 

the hazard ratio. 

d) The h0(t|x) and  S(t|x) can be estimated for a Cox model using a minimum 

of assumption. 

The Cox proportional hazard model is fit by maximizing the likelihood function 

(equation: 20) and this procedure estimates the  h0(t) and β. This popular approach 

was proposed by Cox (1975) in which a partial likelihood also called Cox likelihood 

function that doesn’t rely on h0(t) is realized for β.The partial likelihood is a technique 

developed to make inference about the regression parameters in the presence of 

nuisance parameter h0(t) in the Cox PH model. Assume K different failure times t(1), 

t(2)...t(k) such that there is exactly one failure at each t(i), i=1,...,k.(section:2.2.5). The 

likelihood considers probabilities for subjects who fail and doesn’t consider 

probabilities for censored subject explicitly. The censored subjects are taken into 

account in the risk set. Therefore  si̂  maximize the Cox likelihood (equation: 21). 

 

3.5.6 Proportional hazard assumption checking 

The proportional hazard is the core assumption of the Cox model. There are a number 

of procedures for ensuring that a model satisfies the assumption of proportionality 

before the model results can be safely applied (Brant, 2004).The proportional hazard 

means that the survival for two subjects have hazard functions that are proportional 

overtime (constant relative) (Brant, 2004). 
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3.5.7 Graphical method 

The Cox PH survival function can be obtained by the relationship between hazard 

function and survival function (equation: 22), where X=(x1,x2…xk) is the value of the 

vector of predictor variables  for a particular individual. The logarithm is taken twice, 

and it can be noted that the difference in log-log curves corresponding to two different 

individuals with variables X1=(x11,x12…x1k) and X2=(x21,x22,…,x2k) is given  as in 

equation 23. By plotting estimated log (-log (survival) versus survival time for the two 

groups parallel curves would be realized if the hazards are proportional. However, this 

method doesn’t work well for continuous predictors or categorical predictors that 

have many levels because the graph becomes “cluttered”. Moreover, the curves are 

sparse when there are few time points and it may be difficult to gauge how close to 

parallel is close enough. 

 

3.5.8 Adding time-dependent covariates in the Cox model 

The study has used this approach which is done by creating interactions of the 

predictors and a function of survival time (equation: 24). The model assesses PH 

assumption adjusted for other covariates (equation: 25). The null hypothesis to check 

proportionality is that δ=0.The test statistic can be done using either a Wald test or a 

likelihood ratio test. These statistics have chi-square distribution with one degree of 

freedom under the null hypothesis. If the time –dependent covariate is significant, 

then the predictor is not proportional. 
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3.5.9 Schoenfeld Residuals 

Schoenfeld Residuals are computed with one per observation per covariate. It detects 

if some form of time dependency in a particular covariate. The residual plot has two 

bands, one above zero for X=1 and one below 0 for X=0.It is only defined at observed 

event times for the  ith subject and kth covariate, the estimated Schoenfeld residual, rik, 

is given as in section 2.3.0. A horizontal line shows the coefficient is constant and the 

proportion assumption is valid. 

 

3.6.0 Parametric survival models 

Parametric survival models are regression models in which the distribution of the 

response is chosen to be consistent with what one would see if the response is time- 

to- failure (Gutierrez, 2002). The present study has used parametric survival models 

as they measure follow-up time from a defined starting point to the occurrence of a 

given event, for example the time from diagnosis of a disease to death. In this dataset 

for the survival HIV/AIDS  infected patients; the standard statistical techniques 

cannot usually be applied because the underlying distribution is rarely Normal and the 

data are often censored (Bewick et al, 2004).Parametric regression models assume 

particular families of probability distributions such as exponential, weibull, Gompertz, 

lognormal, log-logistic or gamma hence provide a complete probability specification 

for the data validation for the model (Allison, 2012),and they  yield more precise 

estimates which are being slightly more efficient (Bradbum et al, 2003).The 

parametric survival analysis relates to portability and ease of manipulating a 

mathematical equation to understanding underlying phenomena, assess the impact of 

a risk factor and facilitate strategic medical decision making, particularly in 
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examining the hazard function, one can discover easily what is difficult non 

parametrically (Blackson, 2012). The parametric models explicitly model the function 

form of the event times using various statistical distribution. Generally parametric 

survival models involve two parameters, scale parameter and shape parameter. The 

shape parameter generally assumes constant across individuals and the scale relate to 

determinants via regression which quantifies the effect of predictors, particularly 

treatment.  Parametric survival models can readily predict survival in future groups of 

similar patients as each patient can be given personalized survival curve as a solution 

of the mathematical equation for the patient characteristics (Blackson, 

2012).However, this study has only selected five parametric models: Exponential, 

Weibull, Gompertz, lognormal and loglogistic. The study has used Akaike 

information criterion, statistical criteria, to check if these parametric distribution fits 

the observed data. The residual plots have also been used to check for the goodness of 

fit of the model used.  The parametric models are fitted to the survival data using 

maximum likelihood method, the procedure is described as in section 2.3.1. 

 

3.6.1 Weibull model 

The Weibull distribution is the generalized version of the exponential distribution. It 

is preferred for performing survival data analysis in industrial engineering (Weibull, 

1951). However, when implementations in the discipline of medicines are examined, 

one may see that it is an important distribution model. It is a flexible distribution that 

allows monotonous increasing and decreasing of mortality ratio in patients groups. 

The convenience of the Weibull model for empirical work stems on the one hand 

from this flexibility and on the other hand on the other form, the simplicity of the 
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hazard and survival function. In a study carried by Viscomi et al (2006) the 

distribution of the survival period of childhood leukemia patients was analyzed using 

the Weibull distribution. In a study conducted in Italy on the national wide 

estimations of the cancer patients, some estimations were made for defining the 

parameters of Weibull distribution. The Weibull distribution has been given as in 

equations 28-31. 

 

3.6.2 Exponential model 

The exponential model is the special case of the Gamma distribution and is used in 

cancer survival model. It was once used by Dewals and Bouckaert (1985) on carrier 

bacteria. The exponential model is characterized by the constant hazard rate .Thus it 

has one parameter denoted by λ. This implies that the conditional probability of an 

event is constant overtime. If the exponential distribution is to be used it is important 

to consider whether the hazard is likely to remain constant (flat) over an entire 

lifetime (equation: 32) (flat, which implies that the conditional probability of the 

event is the same, no matter when the observation is observed), The event occurs 

according to a Poisson process (“memory less”).The lack of flat hazards means 

covariates are missing and there is need to use other models.  

 

3.6.3 Gompertz model 

Gompertz model is used frequently by medical researchers and biologists in modeling 

mortality ratio data. The Gompertz model has been considered in this study because it 

turns into the straight hump-shaped line within logarithmic coordinate. The model 
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was formulated by Gompertz (1825). It has functions as indicated and explained in 

section 2.3.4(equations: 39-43).  

 

3.6.4 Log-logistic model 

The log logistic distribution is continuous for the random variable which is not 

negative in probability and statistics. The log-logistic distribution has a fairly flexible 

form, it is one of the parametric survival time models in which the hazard may be 

decreasing, and increasing as well as hump-shaped. It is strictly accelerated failure 

time models in that it begins with the log –linear model. The mortality ratio in a life 

analysis slowly decreases after it reaches to the maximum point over a finite period 

and it is suitable to use anon monotonic failure rate distribution model on the life and 

lost (Viscomi et al, 2006). In case of censored data, using log logistics distribution is 

mathematically more advantages than other distributions (Hayati, 2010). 

 

A study conducted by Byers et al (1988) on the spreading ratio of HIV virus in San 

Francisco between 1978 and 1986 indicated that log logistic was the most suitable 

model among many distributions to use with half censored data. Zhou et al (2007) 

conducted study in which he emphasized that the maximum likelihood estimation was 

the most suitable method in estimating the parameters when performing analyses 

using log logistic distribution on grouped data such as half censored data. The 

distributions functions for the log logistic has been given in section 2.3.5. 
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3.6.5 Lognormal 

The lognormal is a skewed distribution where the average values are low, variances 

are high and the values are not negative. The theory of the lognormal distribution was 

characterized by McAlister (1897) and there is accordance to the lognormal 

distribution in many examples in the area of medicine. The history of lognormal 

distribution, its features, estimation problems and its use in economics were examined 

in detail in 1957. The survival distributions of Hodgkin’s disease, chronic leukemia 

were analyzed via lognormal distribution, which is positively skewed and with 

survival period distributed normally (Lee and Wang, 2003).  Feinleib and McMahon 

(1974), in a study conducted on chronic lymphocyte and myelocythic leukemia 

patients, applied lognormal distribution. In the lognormal, the hazard function 

increases from 0 to reach maximum and then decreases monotonically approaching 0 

as t ,therefore it has been considered in this study because of the very reason that 

its base line hazard has a value of 0 at t=0 and becomes large when approaching 0. 

The survival function and other functions have given and explained in section 2.3.6. 

 

3.6.6 Accelerate failure time model 

The Accelerated Failure Time model is a linear regression model in which the 

response variable is the logarithm or known monotone transformation of a failure time 

(Lee and Wang, 2003). The accelerated failure time model describes a relationship 

between the survivor function of any two individuals. Taking Ti to be a random 

variable denoting the failure time for the ith subject, and let Xi1,X12…, Xip be the 

values of p covariates of the subject. From section 2.3.7 and the equations 60-61, the 

model is then given by 
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}...1{log 10 iipi pXXT    

where ii th  ),(~ 0 is a random disturbance term, p ,...,0   and σ are parameters to be 

estimated, )(0 th  is a known baseline survival, Ti is actual survival times sometimes 

observed is a scale parameter and Xi is a fixed P*1  vector of covariates and Xi is 

assumed to affect logT  linearly and no interactions. Moreover, is σ   assumed to be 

constant and independent of Xi. The parametric accelerated failure time distribution is 

also assumed to be correctly specified. The survival function for the parametric   

baseline accelerated failure model is given as, 

i

t

i tiXStS ){exp()( 0   

where )(0 tS  is the baseline. These accelerated failure time models are named for the 

distribution of T rather than the distribution of   or logT. This is so because different 

distributions have different implications for the shapes or hazard function (Cox and 

Oakes D, 1996).  It has been noted that the proportional hazard model is used 

exclusively in practice. However; the accelerated failure time model in many ways is 

more appealing because it is quite direct physical interpretation especially when the 

response variable does not pertain to failure time (Reid, 1994). 

 

3.6.7 The fitness of the model 

When the model has been fitted the adequacy of it needs to be assessed. There are a 

number of ways to check the adequacy, like using cox-Snell, deviance among others. 

This study has used the cox-Snell residuals to check the fitness of the model. 
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3.6.8 Cox –Snell residuals 

The Cox-Snell residuals is given by Cox and Snell (Cox and Oakes, 1984).From 

section 2.3.9 and equations 62-66, the residuals for the ith individual with the 

observed survival time  is given as follows, 

)(ˆlog)()()exp( 0 iitiici tStHtHxr    

Given that )(0 itH  is an estimate of the baseline cumulative hazard function at time ti 

and it was derived by Kalbfleish and Pretence (1973). 

Letting T be the continuous survival distribution S (t) with the cumulative hazard, 

))(log()( tStH   

Then it follows thus, 

))(exp()( tHtST   

Taking )(tHY     be the transformation of T based on cumulative hazard function. It 

follows that the survival function for Y  is now given as 

})({)( ytHpyYpSY   

))(())((
11

yHSyHTP TTT


  

))}exp())((exp{(
1

yyHH TT 


 

The new   )(tHY  has an exponential distribution with unit one. If the model was 

well fitted, the actual value )(ˆ
ii tS would have similar properties to those of )( ii tS  

Therefore )(ˆlog ici tSr  will have a unit exponential distribution 

with )exp()( rrfR  . Letting )(rSR
   denotes the survival function of Cox-Snell  

residuals cir , then )exp()exp( rdxxfS
r

RR  


 and it follows that 

rrrSrH RR  )log(exp)()(log)( . 
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Hence a plot of )( cirH   versus cir     is used to check the fit of the model. This gives a 

straight line with a unit slope and zero intercept if the fitted model is correct. 

 

3.6.9 Model checking 

There are a number of methods which are employed to check if a parametric 

distribution fits the observed data. In this study the Akaike information Criterion 

(AIC), a statistical criteria, used for comparing models and residuals plots used to 

check the goodness of fit of the model have been used. 

 

3.7.0 Akaike information criterion (AIC) 

The Akaike information criterion (AIC) proposed in AKaike (1974) is a measure of 

the goodness of fit of an estimated statistical model which compares the models 

which have been fitted. The AIC is an operation way of trading off the complex of an 

estimated model against how well the model fits the data. From equation 67, the AIC 

is defined by 

 )(22 cklAIC     

where l is the log likelihood, k is the number of covariates in the model and c is the 

number of model-specific ancillary parameters. The addition 2(k+c) is thought as 

penalty if non-predictive parameters are added to the model. Lower values of the AIC 

suggest a better model. However, there is a difficulty in using AIC in the sense that 

there is no formal test statistically to compare different AIC values when two or more 
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models have similar AIC values. Hence, the choice of the model may be hard to 

determine. 

 

 3.7.1 Residual plots 

The residual plots have been used to check for the goodness of fit of the model. 

Among the useful plots is based on comparing the distribution of the cox-Snell 

residuals with the unit exponential distribution. From section 2.4.2 and equations 68-

70, the cox-Snell residual for ith individual with observed time, ti is defined as:                                                                 

])(ˆlog[)|(ˆ
iiiici xtSxtHr   

where ti is the observed survival time for individual i, xi is the vector covariate values 

for individual i , and )(ˆ
ii tS is the estimated survival function on the fitted model. The 

estimated survival function for the ith individual is given by  

 )
ˆ

ˆˆlog
()(ˆ






i
iii

xt
StS


   

All the statistical analyses have been performed using STATA version: 12. 

Conclusion drawn from the aforementioned analyses has been limited by the  

retrospective  study.
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Chapter 4 

4   Results 

4.1 Descriptive 

Table 2 gives a descriptive summary of the categorical predictor variables considered 

for the HIV/AIDS taking ART in Ntcheu district from 2007-2012.Theresults show 

that 482(7.2%) had died, 1558(23.4%) had transferred out, 1466(22%) defaulted and 

3161(47.4%) were found to be alive and on ART. The results from the table further 

shows that more females, 4527(67.9%) were registered during the period as compared 

to their male counterparts, 2143(32.1%).On World health clinical staging (WHO), the 

results show that more patients were  starting taking  ART at WHO clinical  

stage3,4010(88.3) as compared to WHO clinical stage 4,531(11.7). The majority of 

these patients had no occupation,5182(77.7%)and 1485(22.3%) were the patients who 

reported to have an occupation by the time they were initiating ART. The cd4<=250 

was another issue making patient to be initiated on ART. The results from the table 

indicates that 1462(21.9%) patients were initiated when cd4<=250. The table further 

reports the mean for the age, body mass index, weight and height as 37.9 

years,20.5kg/m2, 52.4kg and 158.9cm respectively. The median for age, body mass 

index weight and height has been reported to be 37years, 20.3kg/m2, 51.6kg and 

159cm respectively. Furthermore, the interquartile range for age, body mass index, 

weight and height has been reported to be 13years, 4.2kg/m2, 11.2kg and 11cm 

respectively.
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Table 2: Descriptive summary of baseline characteristics for HIV/AIDS patients taking ART in  

Ntcheu    :2007-2012 

VARIABLE FREQUENCY MEAN MEDIAN IQR 

death 482 (7.23)    

Transferred out: censored 1558 (23.37)    

Defaulted: censored 1466 (21.99)    

Alive on ART 3161 (47.41)    

Total 6667    

 Sex:     

male 2143 (32.1)    

female 4527 (67.9)    

Total 6670    

WHO clinical stage:     

3 4010 (88.3)    

4 531  (11.7)    

Total 4541     

Occupation:     

Working  1485 (22.3)     

non-working                  5182 (77.7)     

Total     6667     

Cd4<=250:      

0 5204 (78.1)     

1 1462(21.9)     

Total  6666     

Age   37.9  37  13  

BMI   20.5 20.3 4.2  

Weight   52.4 51.6 11.2  

Height   158.9 159 11  
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4.2 Univariate analyses 

The univariate analysis and the tests of equality to explore whether or not to include 

the predictor in the final model and find out whether there exist significant difference 

in the groups for the survival of HIV/AIDS patients taking ART in Ntcheu district 

have been considered. In this study logrank test which is a non- parametric test has 

been employed to test equality of survival curves between categorical levels of 

variables which include: sex, occupation, cd4_250,WHO clinical stage and regimen to 

find out whether there exist significant difference for the effects of these categorical 

variables. Table 3 gives the results of the logrank test 

Table 3 : Logrank test for equality of survival function 

VARIABLE CHISQUARE(1) P-VALUE 

Sex 56.61 0.00 

occupation 1.32 0.254 

WHO clinical stage 4 21.42 0.00 

Cd4_250 10.31 0.0013 

regimen 30.27 0.00 

 

The results of the logrank-test of equality of survival function presented in table 3, 

shows a significant difference in the survival of patients for the sex group with a p-

value ≤0.01.AWHOclinical stage 4, regimen as well as cd4_250 groups have also 

indicated the significant difference in the survival of patients taking ART with a p-

value of p≤0.01. However, occupation has been reported to be statistically 
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insignificant as its p-value has been reported to be 0.25 (p>0.05.Therefore there is 

sufficient evidence of no difference in the survival of patients between working and 

nonworking patients taking ART in Ntcheu district. The following figures (1-4) are 

the Kaplan-Meier curves showing the probability of the survival of HIV/AIDS 

patients taking ART overtime in Ntcheu district after initiation of ART comparing the 

survival among subgroups taking into account the categorical variables at a time. 
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Figure 1: Kaplan-Meier curves comparing survival of male and female HIV/AIDS patients in 

Ntcheu district 
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Figure 2: Kaplan-Meier curves comparing survival of HIV/AIDS patients in WHO clinical stages 

3 and 4 in Ntcheu district 
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Figure 3: Kaplan-Meier curves comparing survival between working and nonworking  

HIV/AIDS patients in Ntcheu district 
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Figure 4:  Kaplan-Meier curves comparing survival of HIV/AIDS patients initiating ART at             

CD4_250 microlitre and otherwise in Ntcheu district 

  

The results from Kaplan-Meier survival estimates, figure 1, have shown that females 

have a better survival as compared to males, as evidenced by the survival for the 

females being positioned above of that of the males. It has also been reported that the 

patients who initiated ART at WHO clinical stage 3 showed better survival as 

compared to WHO clinical 4, figure 2. Although it has shown that HIV/AIDS patients 

who were non-working had better survival as compared to working in the occupation 

category, figure 3, there is no significant difference in the survival of patients 

statistically based on the logrank test table: 3.The HIV/AIDS infected patients who 

were initiated ART at cd4<=250microlitre showed better survival as compared to 

others, figure 4. 
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4.3 Cox proportion hazard model 

Univariate analysis is helpful in determining which predictor is significant before 

being a candidate for complicated model. This is a kind of exploratory analysis. The 

results from table 4 indicates that body mass index (bmi) is significant in both 

univariate analysis (HR=0.84; p0.01) and multivariable analysis(HR=0.84; p0.01) 

Moreover, the results have shown that the bmi is associated with the decreased 

mortality of HIV/AIDS infected patients taking ART.The year increase in age has 

been insignificantly associated with  hazard of death of HIV/AIDS patients taking 

ART in both univariate analysis (HR=1.02; p0.01) and multivariable 

analysis(HR=1.00; p=0.076).The male patients have been significantly associated 

with higher hazard of mortality of almost 2 times the hazard of the female patients in 

both univariate analysis(HR=1.95; p0.01) and multivariable analysis (HR: 1.55; 

p0.01).  The occupation of the patients has been found not to be significant 

influence on their survival in both univariate analysis (HR=1.13; p=0.25) and 

multivariable analysis (HR=1.00; p=1.00).Therefore, it has not been considered in the 

final model. The patients in WHO clinical stage 4 have been significantly associated 

with 1.78 times higher risk of mortality as compared to the patients in WHO clinical 

stage 3 in univariate analysis (HR=1.78; p0.01) and 1.64 times higher mortality as 

compared to WHO clinical stage 3 in multivariable analysis(HR=1.70;  p0.01).The 

cd4_250 _1 has been shown to have a significant impact in decreasing the hazard of 

the patients of HIV/AIDS infected patients taking ART (HR=0.68; p0.01) univariate 

analysis. However, it has been indicated to be insignificant in multivariable analysis 

(HR=1.29; p=0.352). Hence the cd4_250 has been excluded in the final model. 

Regimen 5 has been shown to have a significant impact in decreasing the hazard of 
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the patients of HIV/AIDS infected patients taking ART (HR=0.16; p≤0.01).However, 

it has been indicated to be insignificant in multivariable analysis (HR=1.4; 

p=0.563).Hence the regimen 5 has been excluded in the final model. 

Table 4 : Cox proportional hazard model of HIV/AIDS infected patients taking ART in Ntcheu 

district 

 UNIVARIATE ANALYSIS MULTIVARIABLE 

ANALYSIS 

COVARIATES HR 95%CI P-VALUE HR 95%CI P-VALUE 

Body mass index 0.84 0.81-0.86 0.00 0.84 0.81-0.87 ≤0.01 

age 1.02 1.00-1.02 0.00 1.00 1.00-1.02 0.076 

Regimen 5 0.16 0.08-0.34 0.00 1.40 0.45-4.38 0.563 

male 1.95 1.63-2.34 0.00 1.55 1.24-1.94 ≤0.01 

working 1.13 0.92-1.39 0.25 1.00 0.77-1.29 1.00 

Cd4_250_1 0.68 0.53-0.86 0.00 1.29 0.75-2.21 0.352 

WHO clinical 1.78 1.39-2.28 0.00 1.64 1.24-2.17 ≤0.01 

WHO clinical =WHO clinical stage 4 

A multivariable Cox-proportion hazard model was finally fitted taking into 

consideration of only those predictors which were found significant in both univariate 

and multivariable analysis. Table 5 shows the coefficients of the Cox-proportion 

hazard model among HIV/AIDS infected patients taking ART in Ntcheu district. 
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Table 5 : Coefficients of proportional hazard model of HIV/AIDS infected patients taking ART 

in Ntcheu district 

COVARIATE COEFFICIENT 95%CI P-VALUE 

Body mass index -0.17 -0.20, -0.14 p≤0.01 

male 0.44 0.21, 0.66 01.0p  

WHO clinicalstage4 0.53 0.25, 0.81 01.0p  

 

 From equation 18, the multivariable Cox Proportion hazard model is given by 

)453.044.017.0exp()()|( 0 lstageWHOclinicamalebmithxth   

The model above entails that body mass index decreases the risk of death while being 

male and WHO clinical stage 4 increase the risk of death. 

 

4.4 Checking the proportional hazard model assumption 

When the proportional hazard model has been finally   fitted, there is need to verify 

the assumptions. In the proportional hazard model, the proportion hazard is the core 

assumption. In this study, graphical approach (stcoxkm), time dependent covariates in 

Cox model and tests and graphs based on the Schoenfeld Residuals have been used. 

 

4.4.1 Graphical approach: Cox and Kaplan-Meier curves (stcoxkm) 

In this approach, Kaplan-Meier plots observed survival curves and compares them to 

the Cox predicted curves for the same variable. The closer the observed curves are to 

the predicted curves the less likely it is that the proportion hazard assumption has 

been violated. The figures(5- 6) show the stcoxkm plots. 
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Figure 5 : Cox and Kaplan-Meier plots for categorical variables (WHO clinical stages) for 

checking proportional hazard model assumption among HIV/AIDS infected patients in Ntcheu 

district 
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Figure 6 : Cox and Kaplan-Meier plots for categorical variable (sex) for checking proportional 

hazard model assumption among HIV/AIDS infected patients in Ntcheu district 

The results from figures (5-6) show that the proportion hazard assumption for the two 

categorical variables hold. The observed values of the Kaplan-Meier are closer to the 

predicted values of the Cox. 

4.4.2 Time dependent covariates in the Cox model 

In the Cox approach, time dependent covariates are generated by creating interactions 

of the predictors and a function of survival time and include in the model. If any of 

the dependent covariates are significant then those predictors are not proportional. 

Table 6 shows the time dependent covariates in the Cox model. 

`                                      
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Table 6 : The time dependent covariates in the Cox model 

Function of time,t Coefficient 95% P-value 

Main    

Body mass index  -0.13   -0.19, -0.7  ≤0.01  

Male  0.57 0.21, 0.93  0.002 

WHO clinical stage 4  0.69 0.25, 1.13  0.002  

Time varying  coefficient     

Body mass index 0.03  -0.003,-0.06  0.08  

Male 0.07 -0.14, -0.28  0.52  

WHO clinical stage 4 0.12 -0.13, -0.37 0.36 

 

The results from time dependent covariates, table 6, in the Cox model have shown 

that the time dependents covariates are not significant suggesting no violation of 

proportionality. Hence the results can be safely applied.  

 

4.4.3 Test and Graph based on the Schoenfeld Residuals 

Testing the time dependent covariates is equivalent to testing for non-zero slope in 

generalized linear regression of the scaled Schoenfeld residuals on function time. 

Anon-zero slopes is an indication of a violation of the proportional hazard 

assumption. The table 7 shows the results of the Schoenfeld based on global test. 
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Table 7 : Test of proportional hazard assumption on Scaled Schoenfeld residuals based on global 

test among HIV/AIDS infected patients taking ART in Ntcheu district 

 rho Chi2 df p-value 

Body mass index 0.05 0.77 1 0.38 

Male -0.01 0.03 1 0.85 

WHOclinicalstage4   0.05 0.93 1 0.34 

Global test  3.33 3 0.65 

 

The results in table 7 indicate that the proportional hazards assumption is justified, 

since the global test is not significant. 
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Figure 8 : Graph of Scaled Schoenfeld residuals among HIV/AIDS infected patients taking ART 

in Ntcheu district based on BMI 

In all the plots of Schoenfeld residuals in figures 7 and 8, there is almost a flat line 

being realized. This is an indication that there is no proportionality problem. 

 

4.4.4 The goodness of fit for the Cox-proportion hazard model 

The fit of the Cox-proportion hazard model has been evaluated using Cox –Snell 

residuals. The Cox-Snell residuals are useful in assessing overall model fit. The model 

is said to fit the data well when the true cumulative hazard function conditional on the 

covariate vector has an exponential distribution with a hazard rate of one. Therefore, 

if the hazard rate follows the 45 degree line it suggests that its approximation has an 

exponential distribution with a hazard rate of one then the model fits the data well. 
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Figure 9 : The goodness of model fit for Cox model among HIV/AIDS infected patients taking 

ART in Ntcheu district 

The result from figure 4 shows that the hazard function at least follows the 45 degree 

line very closely expect for very large values of time.  
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Table 8: Univariate parametric regression models with hazard ratio estimates 

 EXPONENTIAL WEIBULL GOMPERTZ LOGLOGISTIC LOGNORM 

Covariate HR 95% CI P.V HR 95% CI P.V HR 95% CI P.V COEF 95% CI P. V COEF 95% CI P.V 

male 2.01 1.68,2.41 0.00 1.97 1.65,2.36 0.00 1.98 1.66,2.37 0.00 -1.27 -1.61,-0.92 0.00 -1.24 -1.58,-0.90 0.00 

age 1.01 1, 1.02 0.01 1.01 1,   1.02 0.00 1.02 1,1.02 0.00 -0.03 -0.04,-0.01 0.00 -0.03 -0.04,-0.01 0.00 

Regimen5  0.35 0.17,0.74 0.01 0.21 0.10,0.45 0.00 0.18 0.08,0.37 0.00 2.87 1.48, 0.13 0.00 2.49 1.42, 3.57 0.00 

Cd4_250 0.67 0.53,0.85 0.00 0.67 0.53,0.85 0.00 0.66 0.52,0.83 0.00 0.75 0.31, 1.19 0.00 0.74 0.31, 1.17 0.00 

WHO clin 1.82 1.42,2.34 0.00 1.80 1.4,2.31 0.00 1.82 1.42,2.33 0.00 -1.16 -1.66,-0.66 0.00 -1.12 -1.64,-0.60 0.00 

working 1.06 0.86,1.30 0.60 1.09 0.89,1.35 0.38 1.11 0.90,1.37 0.32 -0.17 -0.55,0.22 0.39 -0.15 -0.54,0.23 0.43 

bmi 0.83 0.81,0.86 0.00 0.83 0.81,0.86 0.00 0.83 0.81,0.86 0.00 0.36 0.29,0.42 0.00 0.29 0.23, 0.34 0.00 

P.V is p-value where 0.00=p-value≤0.01, WHO clin=WHO clinical stage 4 
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Table 9: Multivariable parametric regression models with coefficient estimates 

P.V is p-value where 0.00=p -value≤0.01, WHO clin 4=WHO clinical stage 4  

                                             

  EXPONENTIAL WEIBULL GOMPERTZ LOGLOGISTIC LOGNORM 

Covariate COEF 95% CI P.V COEF 95% CI P.V. COEF 95% CI P.V COEF 95% CI P. V COEF 95% CI P.V. 

male 0.55 0.33,0.78 0.00 0.49 0.26,0.71 0.00 0.47 0.24,0.69 0.00 -0.97 -1.41,-0.52 0.00 -0.94 -1.38,-0.49 0.00 

Bmi -0.20 -0.23,-0.16 0.00 -0.18 -0.22,-0.15 0.00 -0.18 -0.21,-0.14 0.00 0.38 0.30,0.46 0.00 0.34 0.27,0.41 0.00 

Age 0.01 0.00,0.02 0.05 0.01 -0.001,0.02 0.1 0.01 -0.001,0.02 0.1 -0.02 -0.04,0.001 0.1 -0.02 -0.04,0.003 0.1 

Regimen5 1.34 0.19,2.48 0.02 0.67 -0.48, 1.81 0.25 0.49 -0.65,1.63 0.40 -1.26 -3.45,0.94 0.26 -1.10 -3.24,1.05 0.32 

WHOclin 4 0.53 0.25,0.81 0.00 0.53 0.26,0.81 0.00 0.55 0.27,0.83 0.00 -1.08 -1.65,-0.52 0.00 -1.14 -1.72,-0.57 0.00 

Cd4_250 0.44 -0.11, 0.97 0.11 0.30 -0.23,0.84 0.27 0.27 -0.26,0.81 0.32 -0.51 -1.56,0.55 0.35 -0.32 -1.42,0.78 0.56 

working -0.06 -0.32, 0.19 0.63 -0.03 -0.28, 0.23 0.85 -0.02 -0.27,0.24 0.89 0.03 -0.47,0.54 0.90 0.02 -0.49,0.52 0.57 

Cons 0.11 -0.66,-0.87 0.79 0.38 -0.37,1.13 0.32 1.34 0.59,2.09 0.00 -1.40 -2.92,0.12 0.07 -0.50 -1.93,0.93 0.5 
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Table 9: Continued  

 

 

 

 

 

 

 

 

 

 EXPONENTIAL WEIBULL GOMPERTZ LOGLOGISTIC LOGNORM 

Lnp    -0.66 -0.75,-0.56 0.00          

P    0.52 0.47,0.57           

1/p    1.93 1.76,2.12           

Lngamma          0.60 0.50,0.69 0.00    

Lnsigma             1.28 1.19,1.37 0.00 

Sigma             3.55 3.24,3.89  
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Table 10: Multivariable parametric regression models with hazard ratio estimates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P.V is p-value where  0.00=p≤0.01, WHO clin 4=WHO clinical stage 4 

 

 

 

 EXPONENTIAL WEIBULL GOMPERTZ LOGLOGISTIC LOGNORM 

Covariate HR 95% CI P.V HR 95% CI P.V HR 95% CI P.V COEF 95% CI P. V COEF 95% CI P.V. 

Bmi 0.82 0.79,0.85 0.00 0.83 0.86,0.86 0.00 0.84 0.81,0.86 0.00 0.38 0.30,0.46 0.00 0.34 0.27,0.41 0.00 

Age 1.01 1.00,1.02 0.05 1.01 1.0,1.02 0.07 1.01 1.0,1.02 0.09 -0.02 -0.04,-0.001 0.06 -0.02 -0.04,-0.003 0.10 

Regimen 5 3.80 1.21,11.92 0.02 1.95 0.62,6.1 0.25 1.63 0.52,5.11 0.40 -1.26 -3.45,0.94 0.26 -1.10 -3.24, 1.05 0.32 

male 1.73 1.38,2.17 0.00 1.62 1.30,2.03 0.00 1.60 1.27,2.00 0.00 -0.97 -1.47,-0.52 0.00 -1.94 -1.38,-0.49 0.00 

WHO clin 4 1.70 1.29,2.24 0.00 1.71 1.29,2.25 0.00 1.63 1.32,2.29 0.00 -1.08 -1.65,-0.52 0.00 -1.14 -1.72,-0.57 0.00 

Cd4_250 1.55 0.90,2.65 0.11 1.35 0.79,2.32 0.27 1.31 0.77,2.24 0.32 -0.51 -1.56,0.55 0.35 -0.32 -1.42,0.78 0.56 

working 0.94 0.73,1.21 0.63 0.97 0.75,1.26 0.84 0.98 0.76,1.27 0.89 -0.03 -0.47,0.54 0.90 -0.02 -0.49,0.52 0.95 

Cons 1.08 0.52,2.20 0.84 1.26 0.62,2.54 0.53 2.20 1.48,6.02 0.002 -1.27 -2.75,0.22 0.10 -0.19 -1.61,1.24 0.80 
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Table 10: continued 

 EXPONENTIAL WEIBULL GOMPERTZ LOGLOGISTIC LOGNORMAL 

Lnp    -0.66 -0.76,-0.56 0.00          

p    0.52 0.47, 0.57           

1⁄p    1.93 1.76, 2.13           

Lngamma          0.59 0.50, 0.69 0.00    

gamma       -1.47 -1.68,1.26 0.00 1.81 1.65, 1.99     

Lnsigma             1.27 1.18, 1.36 0.00 

Sigma             3.55 3.25, 3.89  

P.V is p-value where 0.00=p≤0.01  
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The results from the fitted univariate regression models table: 8 have indicated that 

the continuous variable, age, is only significant (p-value<0.005) in exponential model. 

Hence it has been excluded in the final model as it has no significant effects on the 

survival of HIV/AIDS patients receiving ART.The multivariable regression models, 

table: 8c have reported that cd4_250, working, regimen 5 and age are insignificant 

and are not to be included in the final model as they don’t have any significant effects 

on the survival of HIV/AIDS patients receiving ART in Ntcheu district. 

 

4.5 The exponential model 

The exponential model fitted has indicated that occupation and cd4_250 has no 

influence in the survival of HIV/AIDS patients taking ART in Ntcheu district as in 

both univariate and multivariable analysis, tables 8 and 9.On the hand, both the 

univariate and multivariable analysis have reported that sex (male), age of the patient, 

body mass index (bmi) and WHO clinical stage4are significantly influencing the 

survival among the HIV/AIDS patient taking ART in Ntcheu district. However, 

regimen 5 has been indicated to have significant effect on the survival of HIV/AIDS 

in univariate but not in multivariate analysis, hence has been excluded in the final 

model. Using equation (38), the fitted hazard function for the exponential model is: 

)453.055.020.0exp(07.0)|( lstageWHOclinicamalebmixsurvh t 
 

 

4.5.1 The Weibull model 

The results from fitting the weibull model, tables 8 and 9 have indicated that, sex 

(male), WHO clinical stage 4,body mass index have significant effect on the survival 



73 

 

among HIV/AIDS patients receiving ART in Ntcheu district as in both univariate and 

multivariable analysis. However cd4_250 and regimen 5 have been shown to be 

significantly associated with the survival among HIV/AIDS patient taking ART in the 

univariate analysis only. The variable working has been found not to have any 

influence for the survival of HVI/AIDS patients taking ART either in univariate or 

multivariable analysis of the Weibull model. The results have also revealed that the 

hazard is significantly decreasing as its shape parameter (p=0.52) is reported less than 

1.   From equation (31), the estimated hazard function for the weibull  is 

)453.049.018.0exp()(52.0*38.0)|( 152.0 lstageWHOclinicamalebmitxsurvh t  

 

 

4.5.2 The Gompertz model 

The results of the Gompertz model   have indicated that body mass index (bmi), WHO 

clinical stage 4 and sex (male)   significantly influence the survival among HIV/AIDS 

patients taking ART from both univariate and multivariable analysis. On the other 

hand, cd4_250, regimen 5, age have only been reported to be significant in the 

univariate. The occupation_2(working) has been reported to be insignificant in both 

univariate and multivariable analysis, tables 8-10.The function and fitted model for 

the Gompertz, using equation (43), is 

)453.055.018.0exp()47.1exp(34.1)|( lstageWHOclinicamalebmitxsurvh t   
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Figure 10: Hazard function for Gompertz model on categorical variable: Sex 
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Figure 11: Hazard function for Gompertz model on categorical variable: WHO clinical stage 
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Figure 12: Survival function for Gompertz model on categorical variable: Sex 
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Figure 13: Survival function for Gompertz model on categorical variable: WHO clinical stage 

 

4.5.3 The log logistic model 

Similar to what has been found in the exponential, Weibull and Gompertz model, log 

logistic model has also reported the same results with sex (male), body mass index 
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(bmi) and WHO clinical stage 4 being having significant effects on the survival 

among HIV/AIDS infected patients receiving ART   in both univariate and 

multivariable analysis, cd4_250, regimen5 and age has shown the significant 

influence in the univariate analysis. The working is reported to be insignificant in both 

univariate and multivariable. The log logistic regression model is only given in 

accelerated failure, times only. Therefore, from equation (52), table 10, the model for 

the log logistic is: 

181.1

1

]})408.197.038.0exp(40.1{1[)|(  tit survlstageWHOclinicamalebmixsurvS

 

4.5.4 The lognormal regression model 

The lognormal regression model fitted has produced the same results as of other 

models. The cd4_250, age and regimen 5 being significant in univariate analysis. The 

working has still been reported to be insignificant in both univariate and multivariable 

analysis. From equation (59), table 10, the estimated survival function for the 

lognormal in accelerated failure times is: 

}
55.3

414.194.034.05.0)ln(
{1)|(

lstageWHOclinicamalebmit
xsurvS it




 

4.5.5 Selection of the best-fitted model for the patient receiving ART 

There are a number of methods which are employed to check if a parametric 

distribution fits the observed data. In this study the Akaike information Criterion 

(AIC), a statistical criteria, used for comparing models and residuals plots used to 

check the goodness of fit of the model has been used. 
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4.5.6 Akaike information criterion (AIC) 

The study has used the Akaike information criterion so as to select the best parametric 

model among the ones which have been fitted with the predictors reported to be 

significant in both univariate and multivariable analysis. The following are the three 

predictors which have been finally used in fitting the parametric models: male, body 

mass index (bmi) and WHO clinical stage 4. 

 

Table 11: Akaike information Criterion (AIC) statistics for the parametric models 

MODEL OBSERVATION LL(NULL) LL(MODEL) DF AIC 

EXPONENTIAL 3690 -1761.3 -1681.8 4 3371.5 

WEIBULL 3694 -1632.0 -1560.0 5 3161.1 

LOGLOGISTIC 3694 -1628.1 -1533.4 5 3116.7 

LOGNORMAL 3694 -1605.5 -1535.6 5 3081.3 

GOMPERTZ 3694 -1574.2 -1502.4 5 3045.0 

COX 3694 -2621.2 -2554.3 3 5114.6 

 

Table 11 shows the AIC statistics for the five parametric models and Cox model 

applied to the survival data for the selection of the best fitting parametric model. The 

criterion has demonstrated that Gompertz has indicated the achievement of the lowest 

AIC value and hence the suggested model for predicting the survival among 
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HIV/AIDS infected patients receiving ART in Ntcheu district and is followed by the 

lognormal model. The Cox model fits poorly. 

 

4.5.7 Checking goodness of fit of the fitted parametric models 

When the model has been fitted the adequacy of it needs to be assessed. There are a 

number of ways to check the adequacy, like using cox-Snell, deviance among others. 

This study has used the cox-Snell residuals to check the fitness of the model. 

 

4.5.8 Cox-Snell residual plots  

In this study the goodness of fit has been checked by Cox-Snell residual plots. In 

figures (14-18) show the Cox-Snell residuals for the five parametric models and from 

the results it suggests that Gompertz model has fitted the data well as compared to 

other parametric models. The Gompertz has at least followed the 45 degree line. 

Therefore, the Gompertz model has emerged the suitable model for modelling 

HIV/AIDS infected patients taking ART in Ntcheu district  
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Figure 14: Exponential 
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Figure 15: Weibull 
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Figure 16: Gompertz 
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Figure 17: Loglogistic 
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Figure 18: Lognormal 

  

4.5.9: Survival cases of HIV/AIDS infected patients receiving ART in Ntcheu 

district. 

The hazard ratios of HIV/AIDS infected patients receiving ART in Ntcheu estimated 

from the Gompertz are shown in table 12. 

 

Table 12: Covariates of survival among HIV/AIDS patients taking ART in Ntcheu district, 

applying Gompertz model: 2007-2012 

COVARIATE HR 95% CI P-VALUE 

male 1.60 1.27, 2.00 ≤0.01 

Body mass index 0.84 0.81,  0.86 ≤0.01 

WHO clinical stage4 1.63 1.32,  2.29 ≤0.01 

 

From the table 12, it has been shown that the estimated hazard ratio for the body mass 

(bmi) had been reported to be 0.84(p-value≤0.01) and shows that hazard of death 
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decreased within increase in the body mass.  On the other hand the WHO clinical 

stage 4 with reference to WHO clinical stage 3 had been noted to have the hazard 

ratio of1.63( p-value≤0.01).The findings for male had shown that men had 1.6 times 

higher rate of death (p-value≤0.01) as compared to women.  

 

4. 6.0 Discussion 

The study aimed at determining the statistical parametric model on the survival 

among HIV/AIDS infected patients in Ntcheu district. Five parametric models were 

fitted on to the data and the estimates of the coefficients were compared to the Cox 

Proportional hazard model. The results of the estimated coefficients from both the 

parametric and the Cox proportion hazard models were found to be comparable. To 

determine the best parametric model, AIC was used and the Gompertz model emerged 

the champion among the models. It has also been noted that the hazard rate decreases 

with the passage of time as denoted by gamma from the estimated Gompertz model, 

table 8b. In this study the Cox proportional hazard assumption was checked using the 

graphical approach (Cox and Kaplan-Meier survival estimates), time dependent 

covariates in Cox model, test and graphs based on the Schoenfeld residuals. These 

methods have indicated that the proportional hazards assumption has not been 

violated. However, when compared to the parametric models using AIC, the Cox 

model is the worst model among all the parametric models as it achieved the highest 

AIC, table 11. The adequacy of the Gompertz model was assessed using Cox- Snell 

residuals. The results showed that the hazard function followed the 45 degree line 

very closely. This suggest that the Gompertz model is appropriate and worth to be 
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used for modelling the survival among the HIV/AIDS infected patients in Ntcheu 

district. 

 

In review of survival analysis, it was found that only 5% of studies used Cox model 

with respect to checking the underlying assumptions (Atman DG, e tal, 1985).Hence, 

when proportion hazard assumption fails to hold researchers should use parametric 

models as they provide the interpretation based on a specific distribution for duration 

times without need to proportion hazard assumption. This study has demonstrated that 

parametric models are best models compared to the Cox parametric model and as it 

has been already indicated the data has strongly supported the Gompertz which can 

provide precise results compared to Cox semi- parametric model. 

 

In this study 6670 HIV/AIDS infected patients were followed from 2007 to 

2012.More females, 4527(67.9%) were found to have registered for ART as compared 

to males, 2143(32.1%).The number of females is high due to the fact that they seek 

medical intervention more than males. Females also get tested for HIV/AIDS when 

they come for antenatal services. From this study, 482 patients died (7.2%), 

1558(23.4%) were transferred out, 1466(22%) defaulted and a total 3161(47.4%) 

were still on ART. It has been found that the median for age, body mass index, weight 

and height is 37 years, 20.3kg/m2, 51.4kg and 159cm respectively. The mean for the 

age, body mass index, weight and height is 37.9 years, 20.5kg/m2, 52.4kg and 

158.9cm respectively. The study has also indicated that the interquartile range (IQR) 

for age, body mass index, weight and height is 13 years, 4.2kg/m2, 11.2kg and 11cm 

respectively. 
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More patients initiated ART at WHO clinical stage 3, 4010(88.3%) and 581(11.7%) 

patients initiated ART at WHO clinical stage 4.In this population of study, 

5182(77.7%) were nonworking while 1485(22.3%) were found to be working. A total 

of 1462(21.9%) initiated on ART at less or equal to 250 Cd4 cell count threshold. The 

survival among HIV/AIDS infected patients receiving ART in Ntcheu district was 

modeled using parametric models. Using AIC for selecting the model, it was found 

that Gompertz parametric model was emerged to be the champion as the best fitting 

parametric model for modelling the survival among HIV/AIDS infected patients 

receiving ART in Ntcheu district. 

 

Applying the Gompertz parametric model it was indicated that men had higher risk of 

death as compared to the females. It has been found out that most men in Ntcheu 

report late for medical attention after they are already critically ill. It has also been 

noted that they don’t accept to go for HIV/AIDS testing when called to do so. Other 

findings have also reported the same that late reporting of men to care and treatment 

clinics causes men to experience more risk of death than women (Egger et al, 

2002;Alibhai et al, 2010).Most men would go to HIV testing after experiencing 

HIV/AIDS related symptoms. Other studies showed that males start ART with 

advanced disease as compared to females, (Geng et al, 2011). It has been noted that 

most men in Ntcheu are not compliant to ART treatment, as once they start getting 

better they stop taking ART. This is increasing the risk of higher mortality in them. 

Moreover, once they stop complying with ART, they tend to go and continue with 

immoral behavior like sexual immorality which expose them to a lot of sexually 

transmitted diseases as well as more HIV/AIDS viral load. The finding on non-
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compliant to treatment is consisted with Nakhaeeetal (2011).It has been observed that 

most men in the district do indulge in other risky behaviours like smoking and beer 

drinking and these do weaken the immunity of the body leading them to increased risk 

of mortality. Another factor which has been observed in the study which is making 

men with HIV/AIDS to experience higher rate of mortality is that they do miss food, 

say when they go for business and even when they go for social activities like beer 

drinking. The habit derails the immune system of the body and become easily affected 

with various opportunistic diseases. On the part of women in the district, they have 

reduced risk of mortality due to that they freely go for HIV/AIDS testing even before 

the development of any signs or symptoms. Hence, if tested positive they are enrolled 

on ART on time making them to have a reduced risk of mortality. Another point is 

that when they are pregnant they start ART regardless of WHO clinical staging. 

Hence they stand a better chance of being initiated on WHO clinical stages1 or 2 

while men wait till WHO clinical stage 3. 

 

The findings from this study showed that WHO clinical stage 4 was found to be a 

strong predictor of mortality. It has been noted that most of HIV/AIDS patients in 

Ntcheu who are dying fast are the ones who developed diseases like Kaposi sarcoma 

(skin cancer), bacterial pneumonia and had wasting syndrome (severe malnutrition) 

among others. These complications are associated with WHO clinical stage 4. The 

finding from this study is consistent with other studies (Coetteet al, 2004; Brailtstein  

et al,2006;Jerene et al, 2006;Amuron  et al,2011). The study has  found these 

HIV/AIDS infected patients delay in seeking medical attention as well as 

unwillingness to go for HIV testing which could otherwise help them to be initiated 
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on ART on time, for example at WHO clinical stage 3. As a result they go for medical 

help while they are already weak hence making them unlikely to survive longer 

though initiated on ART since their cd4 cell counts are already very low. However, 

other studies had shown that WHO clinical stage 4 was not associated with mortality 

(Hambisa, Ahmed and Yadeta, 2013) and it was assumed that this was due to the fact 

that the majority of the patients (95.9%) have good ARV adherence and large 

proportions (33.2%) started ART early at WHO stages 1 and 2. 

 

The study has also indicated that HIV/AIDS patients with body mass index > 16kg/m2 

are associated with decreased hazard of death. The other studies have documented 

that patients with low BMI<16kg/m2 at ART initiation had a mortality rate double that 

of patients with BMI 5.18 kg/m2(Johannessenet al,2008).In other studies it was 

shown that Protein-Calorie Malnutrition(PCM) is associated with suppression of 

antigen-specific arms of immune system and several generalized host defence 

mechanisms(Mcmurray,1981).It had been noted that persons with Protein-Calorie 

Malnutrition  are more susceptible to opportunistic infections and suffer greater 

morbidity(Schneider et al, 2004; Schaible and Kaufmann, 2007)and it was reported 

further that  Protein-Calorie Malnutrition is associated with reactivation of viral 

infections and decreased T-cell primary antibody response and memory response 

(Najera et al,2007). 
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Chapter 5 

 

5 Conclusion and Recommendations 

5.1 Conclusion 

The study aimed at determining the statistical parametric survival model among 

HIV/AIDS infected patients receiving ART in Ntcheu district. Five parametric models 

were fitted on to the data and these are exponential, weibull, gompertz, loglogistic and 

lognormal. All the models fitted produced the same coefficient estimates for the 

covariates. In this study WHO clinical stage4and sex was found to be significantly 

associated with increased hazard of mortality rate whereby body mass index  was 

found to be significantly associated with decreased hazard mortality rate.Morever, 

cd4_250  occupation and regimen 5 and age had no effect in the Gompertz 

multivariate model which deemed to be the best model. The study used the AIC to 

compare models and Gompertz was reported to have the lowest AIC hence suggesting 

it to be the best parametric model for modelling among HIV/AIDS infected patients in 

Ntcheu district. The goodness- of – fit for the Gompertz model was assessed using 

Cox-Snell residuals. 

 

The Cox proportional hazard model was fitted in this study so as to compare with the 

determined parametric survival model, Gompertz, since Cox proportional hazard 
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model is robust. The study has shown that the results found in Cox proportional 

hazard model are comparable to what has been reported from the Gompertz model. 

However, when Cox model is compared to the Gompertz model using AIC it proves 

to fit the data poorly with its highest value of AIC, table 9. Therefore, researchers can 

use Gompertz model for modelling the survival among the HIV/AIDS infected 

patients receiving ART in Ntcheu district. The study has demonstrated that parametric 

models are the best as compared to Cox model. Hence there is need to fit both 

parametric and semi-parametric model to survival data and the proportion hazard  

assumption of the Cox model should assessed .If the proportion hazard assumption of 

the Cox doesn’t hold , researchers should use parametric models which do not depend 

on proportional hazard assumption. Moreover, the parametric models can be easily 

conducted by maximum likelihood estimates and allow the researchers to explore the 

data through the different relationship consisting of linear trend, nonlinear ones or 

interactions and when the proportions hazard assumption fails to hold these methods 

lead to valid estimates. 

 

5.2 Recommendation 

Adherence is very important for the effectiveness of ART, so there is need to make a 

follow up to identify reasons for their poor adherence mostly in male patients. 

 

5.3 Study Limitations 

a. The major limitation in this study is that data had a lot of 

missing information. For example, most of the patients had 

their cd4 cell count not recorded. 



89 

 

b. Furthermore, it was very difficult to trace the patients who were 

transferred out as to whether they were alive or not or were still 

on ART or had defaulted. Their outcomes after the study were 

not known. 

c. The study has only looked at HIV/AIDS patients of 15 years of 

age and above and there is no any information of HIV/AIDS 

patients below 15years of age on their survival. 
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